
Astronomy & Astrophysics manuscript no. main ©ESO 2022
March 4, 2022

Spatio-temporal analysis of chromospheric heating in a plage
region

R. Morosin, J. de la Cruz Rodríguez, C. J. Díaz Baso, and J. Leenaarts

Institute for Solar Physics, Dept. of Astronomy, Stockholm University, AlbaNova University Centre, SE-10691 Stockholm, Sweden
e-mail: roberta.morosin@astro.su.se

Received XXX; accepted XXX

ABSTRACT

Context. Our knowledge of the heating mechanisms that are at work in the chromosphere of plage regions remains highly uncon-
strained from observational studies. While many heating candidates have been proposed in theoretical studies, the exact contribution
from each of them is still unknown. The problem is rather difficult because there is not direct way of estimating the heating terms
from chromospheric observations.
Aims. The purpose of our study is to estimate the chromospheric heating terms from a multi-line high spatial-resolution plage dataset,
characterize their spatio-temporal distribution and set constraints on the heating processes that are at work in the chromosphere.
Methods. We make use of non-local thermodynamical equilibrium (NLTE) inversions in order to infer a model of the photosphere and
chromosphere of a plage dataset acquired with the Swedish 1-m Solar Telescope (SST). We use this model atmosphere to calculate
the chromospheric radiative losses from the main chromospheric cooler from H i, Ca ii and Mg ii atoms. In this study, we approximate
the chromospheric heating terms by the net radiative losses predicted by the inverted model. In order to make the analysis of time-
series over a large field-of-view (FOV) computationally tractable, we make use of a neural network which is trained from the inverted
models of two non-consecutive time-steps. We have divided the chromosphere in three regions (lower, middle, upper) and analyzed
how the distribution of the radiative losses is correlated with the physical parameters of the model.
Results. In the lower chromosphere, the contribution from the Ca ii lines is dominant and predominantly located in the surroundings of
the photospheric footpoints. In the upper chromosphere, the H i contribution is dominant. Radiative losses in the upper chromosphere
form a relatively homogeneous patch that covers the entire plage region. The Mg ii also peaks in the upper chromosphere. Our
time analysis shows that in all pixels, the net radiative losses can be split in a periodic component with an average amplitude of
ampQ = 7.6 kW m−2 and a static (or very slowly evolving) component with a mean value of -26.1 kW m−2. The period of the
modulation present in the net radiative losses matches that of the line-of-sight velocity of the model.
Conclusions. Our interpretation is that in the lower chromosphere, the radiative losses are tracing the sharp lower edge of the hot
magnetic canopy that is formed above the photosphere, where the electric current is expected to be large. Therefore Ohmic current
dissipation could explain the observed distribution. In the upper chromosphere, both the magnetic field and the distribution of net
radiative losses are room-filling and relatively smooth, whereas the amplitude of the periodic component is largest. Our results suggest
that acoustic wave heating may be responsible for one third of the energy deposition in the upper chromosphere, whereas other heating
mechanisms must be responsible for the rest: turbulent Alfvén wave dissipation or ambipolar difussion could be among them. Given
the smooth nature of the magnetic field in the upper chromosphere, we are inclined to rule out Ohmic dissipation of current sheets in
the upper chromosphere.
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1. Introduction

The heating of the solar chromosphere and corona remains one
of the foremost questions in solar and stellar physics. The chro-
mosphere is on average radiating 4 kW m−2 in the quiet Sun and
20 kW m−2 in active regions (Vernazza et al. 1981; Withbroe
& Noyes 1977). At least, that energy must be transported and
deposited into the chromosphere at any time by heating mech-
anisms. Although we cannot measure chromospheric heating
terms directly, we can approximately estimate them by assum-
ing that they equal the radiative losses in the main chromospheric
coolers, typically strong chromospheric lines and continua from
the H i, Ca ii and Mg ii atoms.

The physics and heating of plage regions have puzzled our
community since the 70’s. Three recent independent studies have
attempted to infer the strength and stratification of the magnetic
field in plage targets (Morosin et al. 2020; Pietrow et al. 2020;

Ishikawa et al. 2021). They found amplitudes of approximately
|B‖|∼ 300 − 400 G, depending on the spectral line and target
under analysis. In particular Morosin et al. (2020) reconstructed
the canopy effect of the magnetic field in the chromosphere. The
magnetic field is very concentrated in the intergranular lanes in
the photosphere and it expands horizontally as we move up in
the atmosphere, forming a hot magnetic canopy over the photo-
sphere. Because of the sharp lower boundary of the canopy, the
authors speculated that current sheets should be present in this
boundary, purely from the application of j = ∇ × B/µ. Those
currents could lead to Ohmic dissipation at the lower boundary
of plage, causing heating at the base of the chromosphere.

Furthermore, modelling chromospheric lines from plage ob-
servations have typically required very large values of microtur-
bulence, typically up to 10 km s−1 (e.g., Shine & Linsky 1974;
Carlsson et al. 2015; De Pontieu et al. 2015; Carlsson et al.
2019). A more recent study using ALMA and IRIS observa-
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tions have further constraint this value to an average value of
5 km s−1 (da Silva Santos et al. 2020). Whether these large val-
ues of microturbulence are related to turbulent velocity fields,
sharp gradients along the line-of-sight induced by a hot mag-
netic canopy above the photosphere (Sanchez Almeida & Mar-
tinez Pillet 1994; de la Cruz Rodríguez et al. 2013; Buehler et al.
2015; Morosin et al. 2020), answering this question is entangled
with the enhanced values of radiative losses that have been re-
ported in plage in comparison with the quiet Sun.

In the chromosphere magnetic forces equal those from pres-
sure gradients, leading to a complex and very dynamic force bal-
ance. Therefore magnetoacoustic waves, turbulent Alvén wave
dissipation, magnetic reconnection, Ohmic current dissipation,
viscous heating and ambipolar diffusion can all contribute to the
heating of the chromosphere (see, Hasan & van Ballegooijen
2008; van Ballegooijen et al. 2011; Khomenko & Collados 2012;
Priest 2014; Martínez-Sykora et al. 2017; Priest et al. 2018;
Brandenburg & Rempel 2019; Yadav et al. 2020; Díaz Baso et al.
2021b; da Silva Santos et al. 2022, and references therein). The
exact set of processes that are at work in plage and their contri-
bution to the energy budget remains highly unconstrained from
observations. A great discussion and exhaustive review about the
potential contribution of different heating mechanisms in plage
is presented by Anan et al. (2021). They also analyzed the cor-
relations of the radiative flux in the Mg ii h&k lines and with the
magnetic field strength that was inferred from observations in
the He i 10830 Å line. Their conclusion was that Alfvén waves
or ion-neutral collisions could be heating plage regions. They
could not find a clear correlation with the electric current in their
results.

Inversion methods allow for the inference of a model at-
mosphere of the photosphere and chromosphere by iteratively
modifying the physical parameters of a model atmosphere to
reproduce the observed full-Stokes spectra. They can be used
for a variety of spectral lines and it is also possible to include
non local thermodynamical equilibrium (NLTE) effects (Asensio
Ramos et al. 2008; Socas-Navarro et al. 2015; Milić & van Noort
2018; de la Cruz Rodríguez et al. 2019; Ruiz Cobo et al. 2022).
NLTE inversions are computationally expensive and time con-
suming, so studying the evolution of the atmosphere parameters
of an entire time series observation could become prohibitive.
The great advantage of inversions is that we can use the inferred
model atmosphere to calculate radiative losses in the chromo-
sphere (see e.g., Abbasvand et al. 2020; Díaz Baso et al. 2021b)
and thereby, obtain a lower-limit estimate of the chromospheric
heating terms. To our knowledge, there is no other way to esti-
mate radiative losses from observational data.

In this study, we have made use of a subset of a long time
series to calculate plage models from NLTE inversions. We have
used the resulting model atmospheres to train a neural network
that can quickly predict the model atmosphere for the rest of the
dataset, in a similar way to Asensio Ramos & Díaz Baso (2019)
or Kianfar et al. (2020). The underlying assumption for this ap-
proach to work is that the training set is statistically representa-
tive of the entire time series. The quantities included in a model
atmosphere are the gas temperature T , the line-of-sight velocity
vLOS , the turbulence velocity vturb, the parallel and perpendicular
components of the magnetic field, respectively B|| and B⊥.

We have calculated the net chromospheric radiative losses
for all time steps of the series in order to better understand the
distribution of radiative losses in a plage target, as well as the
time evolution. In our analysis, we study some correlations with
other physical parameters in order to suggest what heating mech-
anisms could be at work.

2. Observations and data reduction

The target of interest is the NOAA2591 and it was observed with
the Swedish 1-m Solar Telescope (SST; Scharmer et al. 2003)
on the 14th September 2016 at 08:26 UT. It is a plage region lo-
cated at (X,Y) = (424′′,-16′′), that corresponds to a viewing angle
of µ = 0.90. The CRisp Imaging Spectro-Polarimeter (CRISP;
Scharmer et al. 2008) and the CHROMospheric Imaging Spec-
trometer (CHROMIS; Scharmer 2017) were used in order to ob-
tain observations in Ca ii 8542 Å(full-Stokes), Fe i 6302 Å (full-
Stokes) and Ca ii H&K (intensity only).

Ca ii 8542 Å was sampled at 21 wavelength positions. The
distance between each position was ∆λ = 85 mÅ, except of two
points in the far wings of the line located at ±1700 mÅ from line
center. Fe i 6302 Å was recorded at 16 wavelength positions, of
which, two of them located in the red part part of the line at
∆λ = 40, 80 mÅ. The other points are located at ∆λ = −40 mÅ
from line center. The data detected with CRisp have a cadence
of ∆t = 37s, so in total the observation with the instrument lasts
for t ∼ 22min.

The Ca ii H&K lines were sampled at 19 wavelength posi-
tions, at a distance of ∆λ =79 mÅ from each position, with two
extra-wing points at a distance of ∆λ =1.25 Å, and a continuum
position at 4000 Å. CHROMIS has a cadence of ∆t = 16s. In or-
der to match the observations with the two instruments, for each
snapshot of CRisp, we chose the closest snapshot of CHROMIS
in time.

After the acquisition, the data have been reduced using the
SSTRED pipeline (de la Cruz Rodríguez et al. 2015; Löfdahl
et al. 2021). In order to take into account atmospheric effects,
the data have been also processed using the Multi-Object Multi-
Frame Blind Deconvolution method (MOMFBD) described in
van Noort et al. (2005). Then the dataset has been properly
aligned since the two instruments have a different pixel scale.
We also have used the python package ISPy to handle the data
and metadata of the data cubes (Díaz Baso et al. 2021).

An overview of the observed active region is presented in
Fig. 1. The panels depict the observations in Ca ii 8542 Å,
Fe i 6302 Å and Ca ii K. Stokes I and V/I of Ca ii 8542 Å are
shown at ∆λ =85 mÅ from line center. The upper left panel of
Fig. 1 illustrates the plage region in the chromosphere, with typ-
ical features as fibrils, extending from the center of the region
towards the outside. There are two different polarity patches in
the field-of-view (FOV). The Ca ii K wing image in the lower-
right panel shows low-lying bright structures connecting both
polarities.

3. Data analysis

3.1. Inversions

To estimate the thermodynamic and magnetic properties of the
region we have performed non-LTE inversions, using the STock-
holm inversion Code (STiC) (de la Cruz Rodríguez et al. 2016,
2019). It is a modified version of the radiative-transfer RH code
(Uitenbroek 2001) and it includes a fast approximation to cal-
culate the effects of partial redistribution (PRD, see Leenaarts
et al. 2012). The inversion engine of STiC includes an equa-
tion of state extracted from the Spectroscopy Made Easy (SME,
Piskunov & Valenti 2017). The radiative transport equation is
solved using a cubic Bezier solver (de la Cruz Rodríguez &
Piskunov 2013) of the polarized transfer equation.

The spectra in the Ca ii spectral lines were calculated in
NLTE by assuming statistical equilibrium and plane-parallel ge-
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Fig. 1. Overview of the observation in Ca ii 8542 Å, Fe i 6302 Å and Ca ii K. Top row: From the left Stokes I at ∆λ =85 mÅ and V/I at ∆λ =170
mÅ from line center. Bottom row: From the left Stokes V/I of Fe i 6302 Å at ∆λ =40 mÅ from line center and Stokes I of Ca ii K at ∆λ =470 mÅ.
The red box indicates the area used in our study.

ometry. Furthermore, PRD effects were explicitly included in the
calculations of the H&K lines. The Fe i lines were synthesized
assuming local thermodynamical equilibrium. We chose to per-
form the inversions in a column-mass scale. In comparison to
optical-depth, column-mass allows computing the gas pressure
scale directly, without involving the equation of state or back-
ground opacities. We will see later that this feature is important
when using the neural network to predict models from observa-
tions.

We inverted a training set for a neural network. The training
set consisted of the full field-of-view for two non-consecutive
time steps of the series, but in order to speed up the calculations
we only inverted every seventh pixel of the FOV. Furthermore,
in order to efficiently train the neural network it is more con-
venient to have a statistical picture of FOV, with many pixels
spread across the region and many different observed spectra,
rather than many pixels in a small area that could all present
similar observed spectra.

We initialized the magnetic field vector of the initial input
model using the spatially-regularized weak-field approximation
proposed in Morosin et al. (2020). The presence of strong ve-

locity gradients as a function of depth can greatly distort the
line profile of very strong lines. In out tests, this was one of
the main sources of degeneracy in the output models. In order
to better sample the parameter space in line-of-sight velocity, we
prescribed five initializations of the stratification that were added
to the FAL-C model (Fontenla et al. 1993): three with constant
values at 0,±5 km s−1, and two with strong upflowing and down-
flowing gradients (see Fig. 2). The number of nodes used to run
the inversion are the same for all five models. We used 10 nodes
in temperature, 4 in vLOS , 4 in vturb, 3 in B||, 2 in B⊥ and 1 node
in φ. For each pixel, we selected the model that yielded the best
χ2 value and then applied a mild horizontal smoothing. The in-
versions were re-started with an increased number of 11 nodes
in temperature and 4 nodes in B‖. Once all cycles were finished,
we switched on the NLTE equation of state and re-run the final
cycle, that essentially accounts for the ionization of hydrogen in
NLTE and the ionization of the rest of elements is calculated in
LTE. The last cycle essentially affects the temperature stratifica-
tion and the derived electron densities.

The first two rows in Fig. 3 present respectively the T and
vLOS for three different depths in the atmosphere, that corre-
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Fig. 2. Example of the line-of-sight velocity stratifications as a function
of the logarithm of the column mass (ξ), used to create the models for
the inversions with STiC.

spond to lower photosphere, upper photosphere and upper chro-
mosphere. For B||, B⊥ and vturb just two depths have been chosen:
they are represented in each column of the two bottom rows.

The inversion results reproduce many features of the solar
atmosphere that are well known from past research. In the pho-
tospheric temperature map, for example, the granulation pattern
is visible, while moving upwards in the atmosphere the hot-
ter and elongated fibrilar structures extend toward the outside.
Moreover, the magnetic field presents the typical plage structure
with strong concentration of field and field-free gaps in the pho-
tosphere, while in the chromosphere it is more extended and less
strong (Buehler et al. 2015; Morosin et al. 2020). We note that
the Q and U signal in the chromosphere are very noisy and the
inversion code struggles to reconstruct clean maps for the |B⊥|
and the azimuthal components of the magnetic field.

Due to the S/N ratio of the observation and to the different
sensitivity of the emerging intensities to the different parame-
ters of the model, the depth resolution of the model is greatest in
temperature, and line-of-sight velocity, and much more limited
in microturbulence and B‖. Therefore the magnetic canopy does
not appear as sharply in the reconstructed magnetic field strat-
ification as in the temperature reconstruction and in both cases
it is much smoother than it probably is in reality because of the
limitations of a nodes-based inversion.

3.2. Neural network application

Since it would be extremely time consuming and very computa-
tionally expensive to invert all the 35 time frames of the observa-
tion with STiC, we suggest instead a easier and faster approach
using neural networks. They have showed a good performance in
terms of accuracy and speed for solving different problems, for
example to identify and predict solar flares (Panos et al. 2018),
to denoise solar observational images (Díaz Baso et al. 2019), or
to study the mapping between spectral lines and the solar atmo-
sphere (Socas-Navarro 2005; Centeno et al. 2021). In this case,
we have used the resulting model atmospheres from the inver-
sion to train a neural network that can quickly predict the model
atmosphere for the rest of the dataset (Asensio Ramos & Díaz
Baso 2019). We refer the reader to Appendix A for a detailed
explanation of the architecture, training process and validation
of the neural network.

Results of the NN: The results obtained with the training of
the NN are shown in Fig. 4 in a format similar to Fig. 3. The
represented time step is the same as in Fig. 3.

The temperature and line-of-sight velocity prediction from
the NN are very well correlated with the results from the inver-
sions (see 2D density plots in Fig. 5). Both components of the
magnetic field vector are predicted smoother compared to those
obtained with the inversions. The latter occurs because the noise
from Stokes Q and U was dominating the inversion results and
STiC was not able to fully reconstruct the signal. The introduc-
tion of a constant factor in the training helps the neural network
to smooth the noise and to better estimate the values.

The NN seems to overestimate vturb very deep in the pho-
tosphere, while in the chromosphere this behaviour disappears.
The neural network incorrectly correlates areas of strong photo-
spheric B|| with higher values of the microturbulence. We inves-
tigated ways of removing this degeneracy, but we could not find
a solution. We decided to move forward regardless because the
values of the microturbulence close to the continuum formation
layer in the photosphere have no influence in the prediction of
radiative losses through strong chromospheric lines.

4. Radiative cooling rates

The heating terms in the chromosphere can be approximately
estimated by calculating the integrated radiative losses, since the
energy required to sustain radiative losses must be sustained by
chromospheric heating terms. To calculate the radiative cooling
rates from the predicted model atmosphere from the NN, we
first imposed hydrostatic equilibrium in order to derive a z-scale
and the gas pressure scale. Most inversion codes operate in an
optical-depth scale and therefore the gas pressure has to be cal-
culated iteratively with the consequent re-calculation of the con-
tinuum opacity (see, e.g., Mihalas 1970). However, working in a
column mass scale, simplifies the calculations and no iterations
are needed (Hubeny & Mihalas 2014):

pgas = g�ξ (1)

where ξ is the column mass, known from the inversions, g� is
the solar gravity and pgas is the gas pressure.

We have calculated the electron densities in each depth scale
using a simple equation of state1 proposed in Mihalas (1970)
which includes hydrogen atoms bound in H− and H2 molecules.
Once the electron densities were known, we estimated the total
number of atoms for a given temperature assuming an ideal gas:

pgas = (Na + Ne)KBT, (2)

where Na is the atoms number density, Ne is the electron density,
KB is the Boltzmann constant and T the temperature. In this way,
it is possible to obtain the total number of atoms Na and, by mul-
tiplying it to the mean particle mass, we can obtain the density ρ
at a certain depth in the atmosphere:

ρ =< m > Na, (3)

where the mean particle mass < m > is given by:

< m >=

Nelem∑
i

(aimi). (4)

1 https://github.com/jaimedelacruz/pTau
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Fig. 3. Horizontal cuts from the final model atmosphere obtained from the inversions. The depth in the atmosphere is given in column mass. The
T and the vLOS are shown for three different depth, corresponding to lower photosphere, upper photosphere and chromosphere. B||, B⊥ and vturb are
shown for two depth corresponding to lower photosphere and chromosphere.

In this case, ai is the solar abundance of the i-th element and mi
is its atomic mass.

Finally, we obtained the z-scale from the definition of col-
umn mass:

ξ =

∫
ρdz (5)

therefore, in a discrete grid we can write:

dzi =
ξi − ξi−1

(ρi + ρi−1)/2
. (6)

This hydrostatic z-scale is used to calculate the integrated radia-
tive losses in the chromosphere. The latter are calculated inte-
grating over a height interval, selected from the z-scale. Our final
model contains all the quantities calculated under the assumption
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Fig. 4. Final model atmosphere of the field of view obtained from the training of the NN. Format as for Fig. 3.

of hydrostatic equilibrium and the ones previously obtained after
the inversion process.

We have used a modified version of STiC that evaluates di-
rectly Eq. (7) and also outputs the net radiative rates for all tran-
sitions and the atom population densities. In our case we consid-
ered Lyα, Ly continuum, Hα, the Ca ii H&K and the IR triplet
lines and the Mg ii h&k and UV triplet lines. Our inversion setup
includes lines that sample the solar atmosphere from the upper
chromosphere to the photosphere. Although the Ca ii K line may
be sensitive to the very lower part of the transition region, it is

not sufficient to properly constrain its exact location and gradi-
ent. Therefore, the reconstructed transition region is very cold
and extended in comparison to models from inversions includ-
ing transition region diagnostics (see e.g., de la Cruz Rodríguez
et al. 2016). The latter seem to have a large impact in the pre-
diction of the Balmer continuum, which is unrealistically large
in our calculations. We could not find an obvious solution to this
problem, and therefore we did not include the Balmer continuum
contribution in our study. The effect of this exclusion is that our
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Fig. 5. Density plots comparing the results of the inversion with the results of the neural network. From the left: The panels show the correlations
for T , vLOS , B||, B⊥ and vturb at cmass = −3.1.

radiative losses will potentially be even lower than the heating
terms that we are approximating with them.

The inversions were calculated including the effect of
NLTE hydrogen ionization in statistical equilibrium by imposing
charge conservation (Leenaarts et al. 2007). But our NN does not
predict the electron density. Therefore, we have first calculated a
forward synthesis with the H atom, recovering not only the ra-
diative losses but also the electron densities in NLTE. Then the
electron densities in the original model have been replaced with
the new ones in the input model. The synthesis was done for the
Ca ii and Mg ii atoms with the updated electron densities.

The radiative cooling rates are calculated automatically in-
side the code by computing the divergence of the radiative flux
(see e.g., Uitenbroek 2002; Rutten 2003):

Q = ∇ · F =

∫ ∞
0

αν(z) [S ν(z) − Jν(z)] dν, (7)

where αν is the total absorption coefficient, S ν is the total source
function and Jν is the mean intensity over solid angle. For bound-
bound transitions, Eq. (7) can be transformed into an expression
that only depends on the net radiative rates and the level popula-
tion densities:

Q = hν0(nuRul − nlRlu), (8)

where h is the Planck’s constant, ν0 is the central frequency of
the transition, nu/l are the population of the upper and lower level
respectively and Rul/lu are the radiative rate coefficient from the
upper to the lower level or vice versa.

In order to obtain the integrated radiative losses, Q has to
be integrated over the range of geometrical heights of the region
of interest. In our case the integration limits are set in order to
take into account only the chromosphere, so from the depth point
after the temperature minimum to the depth point at which the
temperature reaches T ∼ 10000K. We note that moving the inte-
gration limits can change the derived losses, and therefore some
deviations can be expected when comparing numbers from dif-
ferent studies.

5. Results

5.1. Single timestep

In order to study the spatial distribution of radiative losses, we
have calculated the radiative losses for the initial time step of
the observations. We have chosen this frame because it is one of
those with better seeing conditions. We have divided our inte-
gration interval (in height) into three subregions (lower, middle,
upper chromosphere) to understand how the energy deposition
is taking place, which are shown in Fig. 6. The lower extreme
of the interval has been chosen after the temperature minimum,

5 4 3 2 1 0 1
cmass

6

8

10

12

T 
[k

K]

Fig. 6. Average temperature for the plage region as a function of cmass.
The red dots and the dashed lines represent the total integration interval
for the radiative losses, while the green dots and the dotted lines show
the division between lower, middle and upper integration interval used
in Fig. 7 and Fig. 8.

that define the end of the photosphere and the beginning of the
chromosphere. The upper extreme has been chosen in order not
to include the transition region in the calculations. Since our in-
versions did not include lines that are strongly sensitive to the
transition region, the steep temperature gradient and its exact lo-
cation are not well constrained in our models.

The derived radiative losses integrated over the entire inter-
val and over the three subregions of the chromosphere, are shown
in the top row of Fig. 7. The average integrated radiative losses
over the whole plage region are ∼ −28 kW m−2. The FOV shows
very small-scale regions with peak values of ∼ −90 kW m−2. In
order to have a more precise insight about the calculated radia-
tive losses, we have plotted in Fig. 8 the contributions of each
atom in the tree sub layers of the chromosphere. The Ca ii con-
tribution is dominating in the lower and middle chromosphere
while the contributions from H i and Mg ii lines are negligible
in this region. The middle chromosphere is the sub layer that
presents the lower values associated with the radiative losses. In
the upper chromosphere, Hydrogen is the main contributor to the
radiative losses. The contribution from the Mg ii atom is approx-
imately one half of that from Hydrogen.

The comparison of the integrated radiative losses with the
line-of-sight component of the magnetic field provides great in-
sight into the overall heating process (see Fig. 7). From left
to right, the contours plotted in three of the four panels corre-
spond to a fraction of the median radiative losses value (Q <
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Fig. 7. Top row: derived radiative losses for the entire FOV for the first time step. The first panel from the left represents the total radiative losses
integrated over the chromosphere. The other three panels show, respectively, the radiative losses integrated over the lower, middle and upper
chromosphere. Middle row: Maps of the temperature for four different heights in the solar atmosphere. The height is increasing for left to right.
Bottom row: Maps of the parallel magnetic field for four different heights in the solar atmosphere. The height is increasing from left to right. The
first panels in the middle and bottom rows represent respectively the T and B|| in the photosphere. The green contours indicate the area where
Q < const ∗ Q̃layer kW m−2 in the corresponding atmosphere layer, where Q̃layer is the median value of Q in the corresponding layer. Const = 1.6
for the lower and middle chromosphere, const = 0.7 for the upper layer.

const ∗ Q̃layer kW m−2, where Q̃layer is the average net radia-
tive loss in that layer) in the lower chromosphere, in the middle
chromosphere and in the upper chromosphere. In the lower and
middle chromosphere the bulk of the radiative losses are concen-
trated in the areas surrounding the strongest photospheric mag-
netic field concentrations but not inside the latter. The distribu-
tion of the largest temperatures is also greatly correlated with the
magnetic canopy too. The photospheric temperature panel shows
that our FOV contains a number of small pores. We will discuss
the effect of pores in §5.2. In the lower chromosphere, the peak
values of the radiative losses reach ∼ −20 kW m−2. The lower-
left panel in Fig. 8 shows that the Ca ii contribution dominates in
the lower chromosphere, and the canopy shape is already visible
there.

In the middle chromosphere the magnetic field becomes
smoother and the magnetic canopy is clearly visible in the B‖ im-
age, suggesting that at this depth we are already sampling above

the lower edge of the canopy. The Qmiddle shows a similar pic-
ture with slightly smaller radiative losses. The temperature im-
age shows a nearly homogeneous value of approximately 6.5 kK,
while most pores appear as cold holes in the canopy.

In the upper chromosphere, the integrated radiative losses
are dominated by the H i contribution. In this layer the radiative
losses, the enhanced chromospheric temperature and the mag-
netic field are form a patch above the plage target with relatively
constant values of < Q >≈ −22 kW m−2, < T >≈ 8.5 kK and
|B‖|≈ 370 G. In this layer only the strongest pores are visible in
the temperature map and in the radiative losses map.

5.2. The effect of pores

The presence of pores in plage seem to have a clear imprint in
the statistics of the derived physical parameters (see e.g., Chint-
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Fig. 8. Maps of the contributions to the obtained radiative losses divided by lower, middle, upper layer in the chromosphere and divided by atom.
Top row: Integrated radiative losses for Hydrogen. Middle row: Integrated radiative losses for Magnesium. Bottom row: Integrated radiative losses
for Calcium.

zoglou et al. 2021). Our target contains several pores, that appear
as colder and larger footpoints of the magnetic canopy than in the
rest of the magnetic elements. But otherwise, the magnetic field
is still strongly vertical. The imprint of pores is clear. Because
they are much colder than the smaller bright flux tubes, the ra-
diative losses are insignificant in comparison with the surround-
ings until we reach the upper chromosphere. Figure 10 shows
a vertical cut, also marked in Fig. 7. This slice cuts through
two pores embedded in the plage region (at Y ∼ 8 arcsec and
8 < X < 22 arcsec), illustrating this effect. The figure also sug-

gests that eventually, the imprint of pores is not visible in the
upper chromosphere.

Summarizing, having pores in the the FOV does affect the
derived radiative losses, especially in the lower chromosphere,
because the atmosphere is much colder than in regular flux tubes.
Besides that, having spatially resolved maps greatly helps to sep-
arate their influence from the rest of the FOV.
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5.3. Time-series analysis

The NN has made it possible to obtain the model atmosphere
for all the time steps of the observation, and thereby, it has al-
lowed us to estimate a time series of integrated radiative losses
in the chromosphere over the entire FOV. We have focused on
the red region highlighted in the top left panel of Fig. 7 and we
have calculated the radiative energy balance for 21 time steps of
the whole observations. Given the cadence of the CRISP instru-
ment, the latter cover a total time of ∆t = 12.19 min. In §1 we
mentioned that magnetoacoustic waves and shocks can have a
significant contribution to the heating of plage, and their imprint
should be periodic. Our aim is to separate the contribution of
Ohmic heating from the contribution of waves/shocks (De Pon-
tieu et al. 2007; Hasan & van Ballegooijen 2008) by analyzing a
time series.

In order to have a grasp on the dominant period (p), ampli-
tude (A), phase (φ) and offset (Coff) of the oscillatory behaviour,
we have fitted a very simple model y = Coff + A · sin(φ + pt) to
the vLOS and Qtot temporal curves. The results for two random
pixels are shown in the left and in the middle panels of Fig. 9.
The selected pixels are marked with green crosses in Fig. 7. The
vLOS is estimated in the region at cmass = −3.8, correspond-
ing to middle/upper chromosphere. The results are in line with
previous studies about waves propagation in different targets of
the solar atmosphere. Both curves have very similar periods, but

there is a phase shift between Qtot and vLOS, which we discuss
below.

In order to reduce the noise inherent to a single pixel mea-
surement, we selected the green region of Fig. 7 and computed
the average values of the parameters of the sinusoidal function.
The area covers 20x20 pixels, considering that an average over
a bigger region would lead to a loss of information as the tem-
poral coherency of the curves is not achieved over large spatial
scales. The two sinusoidal averaged functions are out of phase,
as in the panels for the specific pixels, with a phase difference
of ∆φ ∼ 85◦. The periods of the sinusoidal functions of Qtot and
vLOS are respectively pQ = 5.4 min and pvLOS = 4.8 min. The off-
sets have been removed from the representation of the average
functions for an easier comparison between the two results.

The fitting procedure has been extended to the red high-
lighted region in the left top panel of Fig. 7. We have plotted
a map for each parameter of the sinusoidal function in Fig. 11.
The displayed parameters represent the quantities characterizing
the time evolution of Q, vLOS andvturb (from the top row). As a
reference, average values of the parameters over the region are
given in Table 1. In our model, the offset is the value of Q or
vLOS not related to the periodic wave. In the case of the radiative
losses, our interpretation is that it contains the contribution from
other heating phenomena, such as Ohmic dissipation, ion-neutral
collisions, etc. The top left panel of Fig. 11 shows a smooth dis-
tribution of the offset values. Although the smallest scales are
not present in this plot, there is a large scale variation across the
panel.

If we neglect the central-upper part of the maps, outside the
boundary of the plage region, the average amplitudes become
ampQ = 7.6 kW m−2 and ampvLOS

= 3.2 km s−1. The latter is
in agreement with values reported by Centeno et al. (2009) in a
facular region using the He i 10839 Å line. This relatively large
value of the period in the chromosphere can be due to the prop-
agation along an inclined magnetic field line which can extend
the cut-off frequency in the chromosphere (e.g., Bloomfield et al.
2007).

The third column of Fig. 11 shows the period maps of both Q
an vLOS . The yellow contours indicate those areas where the ra-
diative losses are particularly strong (Q < −20 kW m−2). The av-
erage period of oscillation for Q is pQ = 5.5 min, while consid-

Article number, page 10 of 15



R. Morosin et al.: Spatio-temporal analysis of chromospheric heating in a plage region

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5

Y 
[a

rc
se

c]

offset [kW m 2]

50

40

30

20

10

0

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5
amplitude [kW m 2]

0
2
4
6
8
10
12
14

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5
period [min]

4

6

8

10

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5
phase [rad]

0

1

2

3

4

5

6

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5

Y 
[a

rc
se

c]

offset [km/s]

2

1

0

1

2

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5
amplitude [km/s]

0
1
2
3
4
5
6
7

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5
period [min]

4

6

8

10

15 20 25

15.0

17.5

20.0

22.5

25.0

27.5
phase [rad]

0

1

2

3

4

5

6

15 20 25
X [arcsec]

15.0

17.5

20.0

22.5

25.0

27.5
Diff.phase [rad]

0

1

2

3

4

5

6

15 20 25
X [arcsec]

15.0

17.5

20.0

22.5

25.0

27.5

Y 
[a

rc
se

c]

offset [km/s]

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

15 20 25
X [arcsec]

15.0

17.5

20.0

22.5

25.0

27.5
amplitude [km/s]

0.0

0.5

1.0

1.5

2.0

15 20 25
X [arcsec]

15.0

17.5

20.0

22.5

25.0

27.5
period [min]

4

6

8

10

15 20 25
X [arcsec]

15.0

17.5

20.0

22.5

25.0

27.5
phase [rad]

0

1

2

3

4

5

6

Fig. 11. Maps of the parameters (offset, amplitude, period and phase) of the sinusoidal functions obtained for the red region of Figure 7. The
top row shows the quantities characterizing the sinusoidal time evolution of the radiative losses, while the second row represents the quantities
characterizing the time evolution of vLOS at cmass = −3.8. In the two maps of the period, yellow contours indicate the area where Q < −20
kWm−2. The first column from the right shows the phase difference between Q and vLOS . The bottom row shows the quantities of the sinusoidal
evolution for vturb at cmass = −3.8.

ering only the region inside the contour it drops to pQ = 5.2 min.
These results found for vLOS are in line with previous works (de
Pontieu 2004; Centeno et al. 2009), with a value of pvLOS

= 5.5
min. We note that in the plage area (bottom half of the the panel)
the periods present a quite smooth distribution, between 4 an 5
minutes, whereas the upper area of the image, outside the plage
region, shows elongated features with longer periods. The lat-
ter are located at the plage boundary, where the magnetic field
is more horizontal. The phase difference between the radiative
losses and the line-of-sight velocity is dominated by values close
to π/2. Since the behaviour of the radiative losses is dominated
by the temperature, we are essentially recovering the usual phase
relation for running waves.

Although we have not included plots showing the imprint of
the periodic signal in each of the sublayers in which we divided
the chromosphere, we have also performed the fits individually
for each layer too. In the lower and middle chromosphere the
modulation amplitude is of the order of 1 kW m−2, whereas in
the upper chromosphere we get values much closer to the inte-
gral over the entire chromosphere. Therefore, we can conclude
that although the imprint of waves is present in the lower and
middle chromosphere, their contribution is larger in the upper
chromosphere.

6. Discussion and conclusions

Our temporal analysis has allowed us to quantify the contribu-
tion from a periodic component, which we associate with wave
heating. This component is weaker than the offset (background)

Offset Amplitude Period Phase
Q -26.1 [kWm−2] 7.0 [kWm−2] 5.5 [min] 3.3 [rad]

vLOS -0.1 [km/s] 2.9 [km/s] 5.5 [min] 3.4 [rad]
Table 1. Average values of the parameters of the sinusoidal functions
obtained over the red region of Figure 7. Each value of the table corre-
sponds to the average of the respective panel of Figure 11.

value of the heating terms and it has a mean modulation ampli-
tude of ∼ 7.0 kW m−2. This component is responsible for the
very fine structure that we observe in the Qtot maps. The off-
set value, which we associate with a more static or very slowly
evolving component, has a mean value of ∼ −26.1 kW m−2.
The map constructed from the offset value is relatively smooth,
which could also point to a magnetic origin. On the Sun, the
β = 2µPg/B2 = 1 layer is usually located in the lower chromo-
sphere, and therefore, the magnetic field becomes smooth and
room-filling above that layer. Having a relatively smooth off-
set map signals a magnetic origin. The amplitude of the peri-
odic component of the radiative losses is almost a factor four
times larger in the upper chromosphere than in the lower and
middle regions. Given the spatial distribution of periods and
the relatively homogeneous π/2 phase difference, we associate
the periodic component with compressible acoustic waves (the
slow-mode of magnetoacoustic waves when vA > cs). This argu-
ment is further supported by Fig. 12, where we show the time-
evolution of the 8542 Å line at three random pixels selected in
the middle of the canopy areas that are located in the surround-
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ings of the photospheric magnetic elements. In all cases, the clas-
sical saw-tooth pattern from acoustic shocks is clearly visible.

Our results show that in the lower and middle chromosphere
the radiative losses are distributed in areas surrounding the pho-
tospheric footpoints of the magnetic canopy. We do not see en-
hanced radiative losses within the magnetic footpoints of the
canopy. Furthermore, de la Cruz Rodríguez et al. (2013) showed
that in those regions the Ca ii 8542 Å lines profiles have a pecu-
liar shape that can be explained by the presence of a hot mag-
netic canopy in the chromosphere that extends over a relatively
quiet photosphere. The magnetic canopy should have a relatively
sharp lower edge, where current sheets should be found through
the relation j = ∇ × B/µ. Although, our inverted models have a
low depth resolution in the magnetic field reconstruction due to
the S/N ratio of our observations, the temperature stratification
was derived with more than twice number of nodes and we do
appreciate a relatively sharp canopy boundary there. Therefore,
we argue that in the lower chromosphere of plage, Ohmic current

dissipation must be responsible for the bulk of the heating. We
also argue that if wave heating was a dominant phenomena in the
lower chromosphere, its imprint should also be visible inside the
magnetic footpoints, which we do not observe in our results (see
e.g., Hasan & van Ballegooijen 2008). Brandenburg & Rempel
(2019) also showed that in Ohmic dissipation works efficiently
in the photosphere / lower chromosphere.

In the upper chromosphere the radiative losses form a patch
that covers the entire plage region, including most of the pores
that are present in the photosphere. Within this patch, the de-
rived chromospheric temperatures are relatively homogeneous
and larger than in the surroundings, with temperatures the or-
der of ∼ 7.5 − 8 kK and a magnetic field strength of the order
of ∼ 400 G. The largest contribution to the integrated radiative
losses is from the H i diagnostics in the upper chromosphere.
The contribution of wave heating is, in our results, largest in
this layer. From our results alone, we cannot claim to have di-
rect evidence of turbulent Alfvén wave heating (van Ballegooijen
et al. 2011) or from neutral-ion collisions (Khomenko & Colla-
dos 2012). Given the smooth nature of the magnetic field, we
do not expect current sheets to be present in the upper chromo-
sphere, making Ohmic dissipation of currents a less likely heat-
ing mechanism. The periodic behaviour that we observe has a
relatively long period of 5.5 m. At a cadence of ∼ 30 s, wave
patterns with periods lower than 1 m are not properly sampled in
our observations, so we cannot resolve high frequency waves.

In order to investigate deeper the origin of the wave be-
haviour and the energy deposit in the chromosphere, we briefly
extended our study to to the microturbulence velocity vturb. How-
ever, the temporal analysis, represented in the last row of Fig. 11,
doesn’t show clear pattern in the offset or in the amplitude. It is
definitely different from the typical white noise, but doesn’t cor-
relate with the patterns shown in the panels of Q or vLOS . We
could expect an imprint of the wave pattern in the microturbu-
lence if the shocks were relatively unresolved in depth by the in-
version code, forcing a larger microturbulence value to account
for the extra broadening. We do not observe such behaviour.

Our results are somewhat different than those reported by
Anan et al. (2021), but surprisingly also compatible. Their ob-
servations were based on arguably lower spatial-resolution slit-
spectrograph raster scans in the Mg ii h&k lines (IRIS) and in the
He i 10830 Å line. Although their analysis was not based on the
calculation of radiative losses, they used the integrated h&k line
intensity as a proxy, similarly done with the Ca ii H&K lines by
Leenaarts et al. (2018). We have showed that the radiative losses
in the lower chromosphere are very small in the Mg ii lines. By
not having the Ca ii deeper contribution, they would also miss
the heating closer to the lower boundary of the magnetic canopy.
As for their estimates of the chromospheric magnetic field, they
are based on inversions of the He i 10830 Å line, and the latter
usually samples the middle/upper chromosphere (see Fig. 1 in
de la Cruz Rodríguez et al. 2019) according to estimates from
numerical simulations.

The present study is unique in that we have calculated and
studied the distribution of radiative losses as a function of depth
and time from very high spatial-resolution spectra. The canon-
ical value of QAR ∼ 20 kW m−2, derived in the 70’s and 80’s
using spatially and temporally averaged spectra, could not catch
the complexity and dynamic behaviour of the solar chromo-
sphere as shown in our analysis. Our analysis is also different
from previous studies in that we have estimated the contribution
from waves directly from the periodic modulation of the radia-
tive losses, and not by estimating from Doppler velocities the
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energy that is carried out by waves in the chromosphere (Abbas-
vand et al. 2020).

Ultimately, our results could not provide direct evidence that
would allow discriminating what heating mechanism is dominat-
ing in the upper chromosphere. In our opinion, future studies of
the same nature should analyze higher cadence time-series and
higher spatial resolution observations in order to attempt finding
observational signatures of high frequency waves or very small-
spatial-scale variations that could point to turbulent Alfvén wave
dissipation. In order to estimate ambipolar diffusion heating,
an accurate estimate of the upper chromosphere density is also
need, and therefore inversion codes must be modified in order
to include the Lorentz force (Pastor Yabar et al. 2019) and the
support effects derived from velocity gradients.
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Appendix A: Training of the neural network

In general, an artificial neural network is defined by the dimen-
sionality of the input, the number of layers, the number of neu-
rons per layer and the dimensionality of the output. The number
of neurons in each layer does not have to be constant, and can
vary depending on the complexity of the problem. The most used
type of neural network is the fully connected network (FCN;
Schmidhuber 2015), in which every input is connected to every
neuron of the following layer. Figure A.1 shows, in a simpli-
fied way, the architecture and connections of a FCN. Each con-
nection is described by a simple function that combines linearly
the input x multiplied by a weight w and summed with a bias
b and finally returns the value of a certain user-defined nonlin-
ear function f (x). In mathematical notation, the information that
will pass from the input neurons i to the neuron j of the next
layer will be:

σ j = f (Σi(wixi + b j)). (A.1)

This output will be the input for another neuron of the next layer.
Since the first operation is linear, the activation is the one that
introduces the non-linear character of the FCNs.

The optimization of a neural network is called training and it
involves the iterative modification of the weights and biases so
that a loss function that measures the ability of the network to
predict the output from the input is minimized. In our case, we
have trained the neural network to learn the mapping between the
observed Stokes profiles and model atmosphere obtained from
the inversion. Once the network is trained, we are able to re-
construct the temperature T , the line-of-sight velocity vLOS , the
turbulence velocity vturb, the parallel component of the magnetic
field B||, the perpendicular one B⊥ and the azimuth angle φ for
the entire time series. The dimensions of the input are defined
by the total number of pixels and by the four Stokes parameters.
On the other hand, the output dimensions are the total number of
pixels and the number of obtained parameters multiplied by the
number of grid points.

Architecture of the NN: For our purposes, we design a fully-
connected neural network with 5 layers and 200 neurons per
layer. We have found this configuration to be optimal after many
tests in terms of training time and accuracy. The activation func-
tion that we decided to use is the rectified linear unit or ReLU
(Nair & Hinton 2010). It has a linear behavior for a positive in-
put, otherwise, if the input is negative, it is equal to zero:

ReLU(x) = max(0, x). (A.2)

It is applied after every layer of the NN, except for the last one,
to avoid obtaining only positive outputs.

During the design of the network architecture we detected
that the noise in the polarization was amplified and propagated
to some physical parameters. To avoid this problem we decided
to split the model into two parts: only Stokes I was employed
in the calculation of the temperature and vLOS , while all the four
Stokes parameters are used for the other quantities of the model
atmosphere. Although Stokes Q, U and V have information of
the gradient of the source function and the line-of-sight velocity
stratification, in cases where the profiles are very noisy they do
not play an important role in the derivation of the temperature
and line-of-sight velocity, so it is better to avoid propagating that
noise.

X1

X2

X3

Xn

Input layer Fully-connected  
layer

Output: 
Y1, Y2, Y3 . . . Ym

Other fully-connected  
layers

Fig. A.1. Simplified representation of a fully-connected neural network.
The lines that connect the inputs with the neurons are represented in
different style (straight, doted, dashed, ...) because they involve different
weights.

Training process and validation set: Optimization is rou-
tinely solved using simple first-order gradient descent algo-
rithms, which modify the weights along the negative gradient of
the loss function with respect to the model parameters. To scale
the magnitude of our weight updates we have to use the param-
eter called learning rate. This parameter has to be adjusted to
find a compromise between network accuracy and convergence
speed. If this number is too small, it will take too long to reach
the solution, while, if it is too large, there is a risk of overshoot-
ing the optimal solution. In our case we used a learning rate of
10−4. For the optimization method, we have used a gradient de-
scent variant called Adam (Kingma & Ba 2017) which has been
developed to automatically adjust the learning rate, making the
solution convergence faster.

Our goal is to optimize a user-defined loss function that eval-
uates how well our network models the data. The most common
loss function is the mean squared error which measures the av-
erage squared difference between predictions and desirable out-
puts. However, to get an idea of the dispersion of the estimate
we have used the quantile regression (Koenker & Bassett 1978),
a loss function for estimating any percentile value:

L(x, y|q) =

{
q(y − f (x)) if (y − f (x)) ≥ 0
(q − 1)(y − f (x)) if (y − f (x)) < 0 (A.3)

where y is the training value and f (x) is output value of the net-
work. During training, q is randomly varied between 0 and 1 so
that the network can learn all possible percentiles. This allows us
not only to estimate the mean value (q=0.5) but also the disper-
sion (q=0.16 and q=0.84) which is equivalent to one standard de-
viation σ in the case of a normal distribution. The dispersion can
give us an idea of the uncertainty of the inversion since similar
Stokes parameters could have had different atmospheric models
as solutions (Díaz Baso et al. 2021a).

The gradient of the loss function with respect to the free pa-
rameters of the network is obtained using the backpropagation
algorithm. Since the networks are defined as a stack of layers,
the gradient of the loss function can be calculated by the chain
rule as the product of the gradient of each module and ultimately
of the last layer and the specific loss function. The main problem
with some activation functions is that the gradient vanishes for
very large values due to the derivative of this function, making it
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difficult to train the network. For this reason, we have used the
ReLU function, which does not saturate for large values.

Regarding the dataset, we used two non-consecutive time
steps of the observations to train the neural network, in order
to include more statistics in our training set, which correspond
to about 41160 pixels. To further increase the diversity of pro-
files used for training the network, we added a Gaussian noise
component to the input profiles during the training to make the
network prediction more robust to the noise.

Because of the large number of free parameters in a net-
work, overfitting can be a problem. One would like the network
to generalize well and avoid any memorization of the training set
(Bishop 1995; Ripley 1996). To check that, a part of the dataset
is not used during the training but used after each iteration as
validation. Desirably, the loss should decrease both in the train-
ing and validation sets simultaneously. If overfitting occurs, the
loss in the validation set will increase. We have randomly chosen
90% of the dataset as training set and the 10% as validation set.
Furthermore, every time that the loss function, calculated with
the validation set, reached its minimum, we saved the model pa-
rameters. The training was done in a GeForce RTX 2080 Ti GPU
for 400000 epochs. Once we had picked the best weights and bi-
ases, we are able to apply the obtained model to the other time
step of the observations.
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